LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2023

PMT2MC01 - ALGEBRA

Date: 29-04-2023
Dept. No.
Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

SECTION A - K1 (CO1)

Answer ALL the questions

1. Answer the following
a) Let G be a group and $a \in G$. Define the normalizer of a.
b) Write the center of a cyclic group.
c) Give an example for an infinite integral domain.
d) Define simple extension.
e) Write a field with order 27.
SECTION A - K2 (CO1)

Answer ALL the questions
2. $\mathbf{M C Q}$
a) Let order of G is 121 . Then G is
a) Non abelian
b) abelian
c) cyclic
d) Simple
b) Which of the following is cyclic
a) $Z_{10} \times Z_{10}$
b) $Z_{2} \times Z_{10}$
c) $Z_{4} \times Z_{10}$
d) $Z_{5} \times Z_{7}$
c) The polynomial $x^{2}+1$ is reducible over
a) Z
b) Q
c) Z_{2}
d) R
d) Degree of $Q(\sqrt{7})$ over Q is
a) 1
b) 2
c) 3
d) 4
e) Any finite field of order 11 is isomorphic to .
a) Q
b) R
c) Z_{121}
d) Z_{11}
SECTION B - K3 (CO2)

Answer any THREE of the following
3. If $O(G)=p^{n}$ where p is a prime number, then show that $Z(G) \neq(e)$.
4. Show that if G is a finite group, then $c_{a} \frac{o(G)}{o(N(a))}$ where $a \in G$.
5. Prove that the product of two primitive polynomial is primitive.
6. Show that a polynomial of degree n over a field can have at most n roots in any extension field.
7. Show that for any prime number p and every positive integer m there exists a field having p^{m} elements.

> SECTION C - K4 (CO3)

Answer any TWO of the following
8. State and prove Cauchy's theorem.
9. Show that any group of order $11^{2} 13^{2}$ is abelian.
10. Discuss about $\frac{Q[X]}{\left\langle x^{3}-2\right\rangle}$. Also write the multiplicative inverse of $x+\left\langle x^{3}-2\right\rangle$.
11. Show that the multiplicative group of nonzero elements of a finite field is cyclic.
12. Show that any finite abelian group is internal direct product of its Sylow subgroups. Apply it for an abelian group with order 30 .
13. Discuss about Eisenstein Criterion. Also verify the irreducibility of $x^{5}+10 x^{4}-20 x^{3}+5 x^{2}-10$ over Q and Z .

SECTION E - K6 (CO5)

Answer any ONE of the following
$(1 \times 20=20)$
14. a) Write about first and second part of Sylow's theorems.
b) Let G denote the group $\mathrm{S}_{4} \mathrm{XS} \mathrm{S}_{3}$. Then prove that 2-sylow subgroup of G and 3-sylow subgroup of G are not normal.
15. a) Let K be a normal extension of F and H be a subgroup of $G(K, H)$. Prove that [$\left.K: K_{H}\right]=o(H)$ and $H=G\left(K: K_{H}\right)$.
b) Construct a field extension with order 6 over Q . Also write its basis over Q .
($14+6$)

